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In this work, the threshold values of  the screening parameter  for Yukawa 
potential systems are obtained by means of a basis set constructed from 
Laguerre type functions. The Laguerre basis set is modified by an appropriately 
chosen extra function in order to imitate the true behaviour of  the solutions 
at the boundary points. The method used is a variational scheme and the 
numerical results are accurate to thirty decimal points. A scaling parameter  
is also inserted into the structure of  the basis functions, the optimized values 
of  which accelerate the convergence. The main goal of  this paper  is to develop 
a method which enables us to calculate the threshold values of  the screening 
parameter  for low-lying states. The method is quite general and can be 
extended to all systems whose potentials decay exponentially when the radial 
variable goes to infinity. 
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1. Introduction 

In this work, the direct calculation of the threshold values of screening parameters 
in screened coulomb potential systems is presented. This becomes important 
when we deal with physical phenomena like collision, excitation, ionization, 
scattering etc., due to the fact that one needs to know when a state of  the discrete 
spectrum transforms into a state of the continuous spectrum as the screening 
parameter  increases. Indeed, the existence of screening in a coulombic potential 
reduces the number  of  possible bound states to a finite one whose value is 
completely determined by the value of the screening parameter  and by the type 
of the screening potential. Therefore, the possibility of  scattering or ionization 
increases and the bond strength between the particles diminishes as the screening 
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parameter value increases. In certain type of scattering calculations the number 
of bound states must be known. However, this is only possible when we know 
the accurate threshold values of the screening parameter where the bound state 
under consideration can not survive anymore. 

Most of the common methods become incapable of obtaining sufficiently accurate 
energy eigenvalues when the screening parameter approaches its threshold value. 
However, if the threshold values of the screening parameter can be calculated 
within sufficient accuracy then one is able to expand energy eigenvalues in powers 
of the ditterence between the screening parameter and its threshold value. The 
common approach is to perform energy eigenvalue calculations for increasing 
values of the screening parameter until the resulting energy value vanishes within 
the desired precision [1-3]. This is of course, a cumbersome process and further- 
more it is very sensitive to numerical error accumulations. As a matter of fact, 
most of the well-known methods for eigenvalue calculations tend to converge 
slowly around the continuous spectrum threshold and necessitate many more 
iteration steps. Therefore, we have to seek an efficient way which enables us to 
find the threshold values of the screening parameter directly. The screening 
parameter appears as a scaling factor in the structure of screened coulomb 
potentials. This enables us to convert the Schroedinger equation to a generalised 
eigenvalue problem by replacing the energy parameter with zero and by rescaling 
the radial coordinate. The resulting problem has a weight which is merely the 
potential term, and its spectral behaviour is quite dif[erent from that of the original 
Schroedinger equation. In fact, it seems to have only a discrete spectrum, although 
we are not going to attempt to give a detailed proof  of this. 

Before proceeding, let us mention our assumptions to facilitate certain intermedi- 
ate steps of our calculations. First of all, we are interested only in radially screened 
coulomb potential systems. Since these are frequently employed as successful 
models to describe many physical or chemical phenomena [4-6], this is not a 
serious restriction. Although it is possible to import the angular dependence 
through the screened part of the coulombic potential, we are not going to deal 
with this. Moreover, we shall confine ourselves to the specific case where the 
potential is of Yukawa type [7-11]. However, the discussions and applications 
presented here are quite generalisable to any angle-independent potentials which 
decay exponentially when the radial variable tends to infinity. 

The solution of the generalised eigenvalue problem to produce the threshold 
values of the screening parameter can be accomplished with the aid of various 
methods like variational approaches, perturbational techniques, resolvent 
operator methods etc. Since the use of perturbational techniques necessitates a 
good choice of an unperturbed operator and we do not have sufficient insight to 
this end, we prefer to utilise a variational scheme. 

As is well-known, the most important thing in the use of variational schemes is 
the construction of an efficient basis set. Indeed, the basis functions which imitate 
the main features of the true solution yield high precision results with a minimum 
computational effort. On the other hand variational schemes give the eigenvalues 
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starting from the smallest (largest) when the operator under consideration is 
bounded below (above). Therefore, the variational calculation of the highly 
excited state eigenvalues increases the necessary computational effort and 
becomes impossible after a specific eigenvalue depending on the nature of  the 
computational facilities used in the calculation. Hence this approach is incapable 
of  obtaining the entire spectrum. However, many physical and chemica l  
phenomena deal with only the low-lying states of  the system. So, we are going 
to leave the calculation of  the entire spectrum of screening parameter  threshold 
values and try to obtain several low-lying state threshold values for Yukawa 
potential systems. 

In the frame of this discussion the second section of this paper  will be dedicated 
to the presentation of the basis set construction for the variational scheme, where 
analytical formulae for the calculation of matrix elements will be presented. The 
third section covers the numerical results for the Yukawa case with a sufficient 
discussion about the details of  computation. The last section will include the 
concluding remarks. 

2. Basis set construction for the variational scheme 

I f  we consider the Schroedinger equation for a central field potential, we can 
write the following equation after the seperation of angular behaviour as a factor 
of spherical harmonics 

F 1 d 2 1 d +  I(I+ 1) V(__yr)]0 = 
Eq/ (2.1) 

L 2 dr 2 r dr 2r 2 r J 

where Hartree units are used. l and y denote the azimuthal quantum number  
and screening parameter  respectively. The function V is responsible for the 
screening of the pure coulomb field. It is assumed to be unity when r vanishes 
without any loss of generality since a scaling transformation donates this property 
to it. The accompanying boundary conditions necessitate that V must be con- 
tinuous for all possible r values and must have sufficiently rapid decay to be 
included in a square integrable function set under the weight r 2. 

Of course, V might be a function of angles, however at this stage, the introduction 
of this complication is unnecessary, since we are interested, at first, in finding 
the most efficient way for the calculation of screening parameter  threshold values, 
in rather simple cases. 

As we know, the Eq. (2.1) becomes the Schroedinger equation for the hydrogen 
atom when y vanishes. Therefore, if we trace the energy dependence on y values 
for a specific bound state, we see that it starts from the corresponding hydrogenic 
state and arrives at the threshold of the continuum where the energy is zero after 
a monotonic increase in value. We call the value of the screening parameter  at 
this point as its "threshold value". Hence by setting E equal to zero in Eq. (2.1) 
and by replacing yr with r for a rescaling transformation we can obtain 

dr 2 r dr I- ~bcr - ~bcr ; y > O. (2.2) y r 
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Since qJcr belongs to the set of functions which are square integrable with respect 
to the weight r 2, the first thing that comes to mind is to employ the following 

-(t) weighted polynomials k'._~ as basis functions with a normalisation constant An 

~, = A,r' e-~rP(,Z)_l(o'r ) (2.3) 

where the parameters s and o- are introduced to give the flexibility of affecting 
the convergence rate of the variational procedure. As we can immediately notice, 
the application of the variational scheme via a trial function which is formed as 
a linear combination of given basis functions yields a matrix eigenvalue equation 
with a non-unit matrix weight, unless the given basis functions are orthonormal 
with respect to the weight function V(r)/r. On the other-hand V(r)/r can be 
considered as a weight function only when it is positive for all values of r, 
otherwise the positive definiteness of the corresponding weight matrix is not 
guaranteed for all finite linear combinations of basis functions. This means, the 
conversion of the weight matrix to unit matrix via a suitable matrix transformation 
is not always possible. As a matter of fact, we could use the left hand side operator 
in Eq. (2.2) as a weight operator. Since it is positive definite, it would permit us 
to convert its truncated matrix representation to a unit matrix. However, this 
procedure, possibly necessitates the construction of a new orthonormal poly- 
nomial set. Henceforth, we assume that V(r)/r is positive for all r values. Under 
this assumption P(f_~ polynomials can be constructed from the set of functions 
(1, r, r 2 . . . .  ) via the Gramm-Schmidt  orthonormalisation procedure by using 
V(r)/r as weight in the integral of the scalar product. Of course this orthonormali- 
sation may be considered unnecessary. However, if it is not carried out, the 
resulting weighted matrix eigenvalue problem becomes numerically open to error 
accumulations coming from the extra diagonalisation of the weight matrix. In 
fact, there is a hidden numerical orthonormalization procedure in the solution 
of generalised matrix eigenvalue problems. Hence the solution of the unit weight 
matrix eigenvalue problems must be preferred instead of the above one. 

In this work, we specify V(r) as follows 

V(r) = e -r (2.4) 

to avoid dealing with the construction of  certain unusual polynomials and to 
benefit from the advantages of using Laguerre polynomials. Furthermore, this 
specification confines us to Yukawa potential systems which still preserves their 
attractiveness in both physical and mathematical senses. So we can use the 
following quite standard functions as a basis set 

[ ( n - - l ) ' ]  1/2 
q~" =/(--~-2~-!J  (1 +2s)'+'r ' e-~rL~; ( (1  +2s ) r )  (2.5) 

r2~+1 denotes the associated Laguerre polynomials. These functions are where --,,-1 
orthonormal with respect to the weight e-F/r and contain only one adjustable 
parameter. Although we are not going to present the results, the variational 
scheme via these basis functions does not produce rapidly converging values, 
even when the adjustable parameter, s is optimised. This is mainly due to the 
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lack of  the reflections of the true eigenfunction behaviours especially at the 
endpoints of r-interval. Therefore, we can attempt to cure this weakness of 
the basis functions, using the following finite set of basis functions 

~b,, = ~p,, ; n = l , 2 , . . . , N - 1  (2.6) 

{ __1 } 
e N = B  C(1-e-Srsc21(sr))/rt+l- Y~ q,~, (2.7) 

n = l  

21 S Jr j 
~:2, = Y. j !  (2.8) 

j=0 

where B, C and q. are to be determined through the following conditions to 
fulfill the requirements of  the Gram-Schmidt procedure 

I:  C 2 r -21-1 e-~r[1 - e-Sr~2l(sr)]2 dr = 1 (2.9) 

Io o q. = C q~n(1 - e-Sr~21(sr)) e-rr I dr (2.10) 

~ ,  1.2 
B = 1 -  k=, q~J (2.11) 

where the summations whose upper index is smaller than their lower one are 
assumed to vanish. By performing the necessary integrations we can arrive at the 
following analytical results 

C = [(21)!] 1/2[ C, --]- C2 - C3 -}- C4] ,/2 (2.12) 

C1 = 2 in (1 + s) - l n  (1 +2s)  (2.13) 

2,-1 (_s)k+,  
C2=k=O y ( k + l )  (2.14) 

2121-j-'(21-l-k) 1 ( s~  j+k+' C3=(I"kS)21E • (2.15) 

2l S J C4=(lq-x)2lj~_O(--'~S ) Jz' l--~-(2l-Jkq-k)( s-----~)J-k (2.16) 
k=oj--k \ 1 + 2 s 1  

[ ("- l ) 'q "2 [-~, d2 ] (2.17) 
q" = L(n+21)!J  (l+2s)t+lc 1 1+2s  

ha(m+ ) .1__~ 2, m (  •  . . . .  
m=0 \ - - I + s /  (2.18) 

2, :2, 
d2 = ~ (2.19) 

m=o\ n - 1  
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These form the recipe for the matrix element calculations in the variational 
scheme. Let us, now, discuss the selection of the function given by Eq. (2.7) and 
the linear independence of the set given by Eqs. (2.7) and (2.8) 

Since the threshold values are relevant to the behaviour of  system's wave functions 
at infinity, we must reflect the true eigenfunction's behaviour at infinity in the 
trial function. Due to the exponential decay in V when r goes to infinity, the 
solutions of  the Eq. (2.2) must asymptotically approach the decaying homo- 
geneous solution for the radial part of  the Laplace operator. Therefore 

(I//cr)r_~co = f i r  1+1. (2.20) 

This, however, implies that the trial function must have the following form 

Or = C[r -~-' - r/(r)] (2.21) 

where rt(r) is an exponentially decaying function. 

On the other hand, attempts to obtain the formal solution of the Eq. (2.2) around 
its regular singular point where r =0 ,  show that the true eigenfunction must 
behave like r t when r tends to vanish. Hence we can write 

@T = Cr-l-l[1 - e-Sr~zl(sr)] + Crh(r) (2.22) 

where ~71 (r) is analytic everywhere and exponentially decays at infinity. Therefore, 
we have verified the selection given by Eq. (2.7). 

As a matter  of  fact, ~bN and the ~,-functions can not stay linearly independent 
as N increases unboundedly.  Since any function which is regular for all r values 
except certain finite jumps at a finite number  of  points in the domain of r, can 
be expanded into an infinite series of  q~,-functions. This expansion converges 
in the mean, everywhere except at singular points. This linear dependence is un- 
avoidable. However, for finite N values they remain linearly independent for 
an appropriate  choice of  the s value. 

3. Numerical  applications for Yukawa case 

I f  we consider the following matrix elements 

fo "~ [ d2 2 d l ( l + l ) T d r  2 rdr I4jk = c~j f - - - ~  j 4~k dr (3.1) 

we can formulate the eigenvalue problem resulting from the variational scheme 
as follows 

Ha --- ( 2 / y ) a  (3.2) 

where a is an N-dimensional  vector whose elements are merely the linear 
combination coefficients appearing in the trial function. Now, we need the values 
of  the elements of  H to perform necessary numerical steps. To this end, we can 
write the following equation 

[ d 2dr 2 2 d r  dr zr- II(l+l)] [2s(k+l) ] [(k+21)(k-l)] 1/2 F - - z - v - - I  ~ok = - s 2 ~kq ~k-1 
r 

(3.3) 
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after using certain formulae for Laguerre polynomials. This, however, implies that 

fo o I - I jk=2s(k+l)Gjk+[(k+21)(k-1)] l /2G~k_a-s  2 ~pj~kdr, 

1 --<j, k -< N (3.4) 

where 

Io Gjk = q~j~Ok--. (3.5) 
r 

If we use the fol lowing formula which is derived from the recursion formula for 
Laguerre polynomials  

(1 + 2s)rq~k = - [ k ( k  + 21+ 1)] '/2~pk+~ + (2k + 21) ~Pk 

- [ (k - 1)(k + 21)] 1/Z~Ok_~ (3.6) 

we can write 

~Ojq~k dr = (1 + 2 s ~  { - [ k( k + 2l + 1)11/2Gjk+i + (2k + 21)Gjk 

- [(k - 1)(k + 21)1 '/2Gjk_l}. (3.7) 

Therefore, the evaluation of the G~ terms is sufficient for the determination of 
the Hjk-elements. This, however, can be accomplished by repetitive use of Eq. 
(3.6) arriving at the following two-index recursion [11]. 

Gj+~k = [ j ( j  + 21+ 1)11/2{[k(k + 21 + 1)11/2 Gjk+l "~ [ ( k  - 1)(k + 21)] 1/2 Gjk_ 1 

- [ ( j - 1 ) ( j + 2 1 ) ] i / 2 G j - l k + 2 ( j - k ) G j k } ,  j, k =  1 , 2 , . . . .  (3.8) 

Therefore, we need only know the elements whose first (or second) index is one, 
to evaluate all G-terms. Since an M •  M array of G-terms necessitates the 
evaluation of the first 2M elements in the first row (column) of the G-table (a 
two-dimensional array), the evaluation of the M-dimensional H matrix can be 
realised by a knowledge of the first (2M + 2)-terms in the first row of the G-table. 
Therefore, to complete the variational matrix calculation we need only the 
following formula 

= (1 q-2s) 2/+2 I. ~ 
Glk (21+1)! [ ( k - 1 ) ! ] l / 2 - u  r 21+~ e-2SrLZl+~((l+2s)r) dr 

= ( k + ~ / +  1 ) [ (k - l ) , ] t / 2 ( l+2s )2 '+2  
(_2s) k+2,+2 (3.9) 

which is obtained after performing certain integrations over Laguerre polynomials 
[121. 

So, we are now able to solve numerically the finite dimensional matrix eigenvalue 
problems resulting from the variational scheme. The execution of the numerical 
computations is realised for several dimensions and scaling parameter values. 
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Table 1. Threshold values of the screening parameter for the Yukawa potential system in descending 
order 

State Threshold value 

ls  1.190 612 421 060 617 705 342 777 106 361 
2s 0.310 209 282 713 936 939 110 112 212 953 
2p 0.220 216 806 606 573 040 405 041 463 290 
3s 0.139 450 294 064 178 013 882 357 954 890 
3p 0.112 710 498 359 524 944 973 972 952 155 
3d 0.091 345 120 771 732 184 927 710 066 860 
4s 0.078 828 110 273 171 565 170 282 204 980 
4p 0.067 885 376 100 579 552 788 417 968 578 
4d 0.058 105 052 754 469 264 181 224 714 848 
5s 0.050 583 170 374 558 799 782 284 408 668 
4f  0.049 831 132 318 645 225 242 887 831 002 
5p 0.045 186 248 071 624 990 093 706 122 691 
5d 0.040 024 353 938 324 274 958 258 960 951 
5f 0.035 389 389 799 948 414 321 063 141 283 
6s 0.035 183 477 367 820 588 148 390 875 853 
6p 0.032 174 932 293 205 003 538 581 132 480 
5g 0.031 343 552 436 538 045 217 407 715 656 
6d 0.029 166 650 229 397 650 381 902 551 150 
6f  0.026 350 671 639 829 827 843 633 383 329 
7s 0.025 876 416 481 121 578 169 930 945 718 
7p 0.024 047 639 235 996 140 851 390 943 514 
6g 0.023 799 103 968 969 544 816 131 058 183 
7d 0.022 161 826 355 339 786 360 688 903 637 
6h 0.021 524 548 401 894 416 262 524 364 337 
7f  0.020 342 170 661 307 635 762 223 228 439 
8s 0.019 826 307 429 825 264 337 059 425 553 
7g 0.018 646 215 359 623 339 252 011 442 697 
8p 0.018 640 705 347 623 634 654 280 763 092 
8d 0.017 390 648 079 030 682 359 871 838 426 
7h 0.017 095 135 615 471 857 578 885 041 702 
8f 0.016 156 534 483 956 706 186 410 014 683 
7i 0.015 691 083 667 701 475 990 456 076 173 
9s 0.015 673 723 828 474 905 372 994 735 928 
8g 0.014 980 862 636 386 665 583 951 297 415 
9p 0.014 865 869 356 224 286 239 220 545 742 
9d 0.013 999 880 572 892 515 518 358 979 692 
8h 0.013 883 519 722 165 163 911 660 037 295 
9f  0.013 129 670 383 752 190 264 262 157 895 
8i 0.012 871 464 312 728 093 468 171 298 690 
10s 0.012 700 950 763 810 386 771 388 389 902 
9g 0.012 286 145 678 137 967 681 387 938 966 
10p 0.012 128 229 513 755 452 397 915 667 880 
8j 0.011 944 531 306 208 677 525 206 756 337 
10d 0.011 506 513 742 042 353 053 318 933 727 

T h e  s c a l i n g  p a r a m e t e r  s is c h o s e n  s u c h  t h a t  o n e - d i m e n s i o n a l  m a t r i x  e i g e n v a l u e  

p r o b l e m  p r o d u c e s  t h e  m i n i m u m  v a l u e  o f  i ts  e i g e n v a l u e .  H e r e  w e  d i d  n o t  u s e  a n  

e x a c t  m i n i m i s a t i o n  p r o c e d u r e  to  a v o i d  u n n e c e s s a r y  ef for t .  A s  a m a t t e r  o f  f ac t ,  
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Table 2. Variation of the linear independence parameter 
with respect to dimension and scaling parameter 

l s M N B•  -N 

0 1 20 13 2.07516 
0 1 40 26 9.50772 
0 1 60 34 -5.77779 
0 3 20 6 1.31374 
0 3 40 12 6.78391 
0 3 60 23 4.59198 
0 6 20 4 2.66292 
0 6 40 7 2.94265 
0 6 60 10 4.19869 
0 6 80 13 6.67860 
4 1 20 19 6.20593 
4 1 40 27 -5.34421 
4 5 20 10 2.55224 
4 5 40 16 8.56035 
4 5 60 20 2.16130 
4 5 80 24 1.33504 
4 13 40 12 5.77526 
4 13 80 17 5.87749 
8 10 40 17 1.38541 
8 10 80 23 -1.10530 
8 20 40 16 6.05098 
8 20 80 21 5.52247 

I: azimythal quantum number; M: dimension of the sub- 
space spanned by Laguerre polynomials; s: scaling par- 
ameter; B: linear independence parameter 
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Results for threshold values of  y are presented in Table 1 in descending order. 
Usual spectroscopical notation is used to specify the states (s, p, d, f ,  g, h, i , j , . . . ) .  
These results are obtained using dimensions between forty and a hundred and 
scaling parameter  values changing from 1.5 for the ls-state to 15.0 for the highest 
excited state given in table. 30-digit precision is given there, however the last 
decimal point may have an error of +1. A VAXl l /780  computer is used in 
computations and FORTRAN programmes are run in quadruple precision. The 
standard routines TRED2 to tridiagonalise the symmetric variational matrix and 
TQL2 to solve the eigenvalue problem of resulting tridiagonal matrix [13] were 
employed. 

In Table 2, the reciprocal of  B 2 in Eqs. (2.7) and (2.11) is used as a measure of  
the linear independence of (~N and {Pl, �9 �9 �9 ~)N-1}. Its values are given for several 

determination of  the scaling parameter becomes a cumbersome procedure when 
the dimension of  the variational scheme increases. Hence we have taken a 
reasonable value of s, and tried to increase the dimension of  the variational 
scheme until the desired accuracy is obtained. However, to stabilise the excited 
states we have had to increase the s-values. This increase necessitates an increase 
in dimension. 
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independence can be strengthened by increasing the value of s as the state number 
and the dimension of variational scheme increase. Therefore, it can be used as 
a criterion in the selection of a suitable s. I f  s is not chosen in the vicinity of its 
values which increases the linear independence, then numerical error accumula- 
tion, hence an oscillating character, in the last decimal points of  the threshold 
value appears. 

4. Concluding remarks 

In this work, we have calculated threshold values of  the screening parameter  for 
certain low-lying states of  Yukawa potential systems. Although a variational 
scheme has been used, we have introduced a novel basis set instead of  standard 
ones. Quite accurate results are obtained after an appropriate selection of scaling 
parameter.  However, as is expected from all variational schemes, it is not possible 
to evaluate any desired, say hundredth, eigenvalue within a prescribed accuracy. 
This can possibly be accomplished by using perturbational schemes as we plan 
for future work. The next step of our studies will be the development of  the 
asymptotic formulae for the energy eigenvalue calculations in Yukawa potential 
systems. This can be successfully realised only after the present work has been 
completed. So, we now have a sufficient tool for this purpose. The restriction 
about the type of screened coulomb potential is not very serious. As a matter of  
fact, one can easily generalise the concepts and the criteria in the construction 
of the basis set to the more general screened coulomb potentials which decay 
exponentially at infinity. On the other hand if the potential does not decay 
exponentially, then certain modifications may be necessary. Therefore, as a 
conclusion, we have all appearances of  the possibilities to accurately calculate 
the values at the threshold regimes in screened coulomb potentials. 
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